Continuous partition lattice
نویسندگان
چکیده
منابع مشابه
On Realization of Björner's 'continuous Partition Lattice' by Measurable Partitions
Björner [1] showed how a construction by von Neumann of examples of continuous geometries can be adapted to construct a continuous analogue of finite partition lattices. Björner's construction realizes the continuous partition lattice abstractly, as a completion of a direct limit of finite lattices. Here we give an alternative construction realizing a continuous partition lattice concretely as ...
متن کاملChains in the Noncrossing Partition Lattice
We establish recursions counting various classes of chains in the noncrossing partition lattice of a finite Coxeter group. The recursions specialize a general relation which is proven uniformly (i.e. without appealing to the classification of finite Coxeter groups) using basic facts about noncrossing partitions. We solve these recursions for each finite Coxeter group in the classification. Amon...
متن کاملSymmetries of the k - bounded partition lattice
We generalize the symmetry on Young’s lattice, found by Suter, to a symmetry on the k-bounded partition lattice of Lapointe, Lascoux and Morse. Résumé. Nous généralisons la symmetrie sur le treillis de Young, découvert par Suter, à une symétrie sur le treillis des partages bornés par k et étudié par Lapointe, Lascoux and Morse.
متن کاملCounting complements in the partition lattice, and hypertrees
A partition n = {A,, . . . . A,) of the set [n] = { 1, . . . . n} is an (unordered) family of nonempty subsets A,, . . . . A, of [n] which are pairwise disjoint and whose union is [n]. We call the Ai the blocks of rc, and let 1x1 =m. A partition {B,, . . . . B,} is a refinement of {A,, . . . . A,} if each Bj lies in some Ai. It is well known (but of no relevance in this paper) that the ordering...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences
سال: 1987
ISSN: 0027-8424,1091-6490
DOI: 10.1073/pnas.84.18.6327